Abstract
The paper deals with the problems of stability for a system of circular rings interconnected in such a way that the displacements of these rings, and the rotation angles of their sections at some points, coincide. This has been reduced to a certain variational problem with restrictions on the functions in question in the form of linear equations, and Fourier series are used to obtain a finite-dimensional approximation. The paper also presents the stability problem for a system of circular rings reinforced by inextensible threads that cannot resist compressive forces. In this case, constraints in the form of inequalities arise, and after finite-dimensional approximation the problem reduces to finding the bifurcation points for a nonlinear programming problem in the presence of inequality constraints.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.