Abstract

ABSTRACTWe have investigated the stability of the hydogenated amorphous silicon thin film transistors (a-Si:H TFTs) employing silicon dioxide (SiO2) with N2 plasma treatment as a gate dielectric, where SiO2 was deposited by atmospheric pressure chemical vapor deposition (APCVD). Their stability was compared with those of a-Si:H TFTs whose gate dielectric was silicon nitride (SiNx) deposited by plasma enhanced chemical vapor deposition (PECVD). Two kinds of stresses, gate bias and light illumination, were applied. The threshold voltage shin (AVu,) and the inverse subthreshold slope shift (ΔVth) were measured as a function of the bias voltage and the light stress time. For the positive bias stress, the ΔVth, of the a-Si:H TFTs with the N2 plasma treated SiO2 dielectric is smaller than that with the PECVD SiNx gate dielectric. For the negative bias stress and light stress, however, the ΔVth of TFT with N2 plasma treated SiO2 dielectric is larger than that with the SiNx dielectric

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.