Abstract

In this paper, we analyze the stability of a homogeneous self-gravitating plasma, having a non-zero resistivity. This study provides a generalization of the Jeans paradigm for determining the critical scale above which gravitational collapse is allowed.We start by discussing the stability of an ideal self-gravitating plasma embedded in a constant magnetic field. We outline the existence of an anisotropic feature of the gravitational collapse. In fact, while in the plane orthogonal to the magnetic field the Jeans length is enhanced by the contribution of the magnetic pressure, outside this plane perturbations are governed by the usual Jeans criterion. The anisotropic collapse of a density contrast is sketched in detail, suggesting that the linear evolution provides anisotropic initial conditions for the non-linear stage, where this effect could be strongly enforced.The same problem is then faced in the presence of non-zero resistivity and the conditions for the gravitational collapse are correspondingly extended. The relevant feature emerging in this resistive scenario is the cancelation of the collapse anisotropy in weakly conducting plasmas. In this case, the instability of a self-gravitating resistive plasma is characterized by the standard isotropic Jeans length in any directions. The limit of very small resistivity coefficient is finally addressed, elucidating how reminiscence of the collapse anisotropy can be found in the different values of the perturbation frequency inside and outside the plane orthogonal to the magnetic field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.