Abstract

We are developing quasi-optical superconducting hot-electron bolometer (HEB) mixer receivers for astronomical and atmospheric remote sensing applications. The microbridge of the HEB mixer was fabricated at room temperature from a 6.8-nm-thick niobium titanium nitride (NbTiN) film deposited on a 20-nm-thick aluminum nitride (AlN) buffer layer, using a helicon sputtering technique at a slow deposition rate. The mixer was cooled to 4.2 K using a closed-cycled mechanical 4 K pulse-tube cryocooler with a temperature fluctuation of <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$\pm$</tex></formula> 1.6 mK. The stability of a large-volume NbTiN HEB mixer was studied at 1.47 THz by changing local oscillator (LO) power with the mixer bias voltage fixed. The intermediate frequency (IF) signal measured at 1.5 GHz had a maximum peak at a certain mixer bias current. The receiver noise temperature was lowest at around the IF maximum peak. It was also found that the IF signal was most stable at around the IF maximum peak under conditions in which the instability of LO pumping level, induced by small mechanical vibrations of the cryostat, remained in the optical system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call