Abstract

Coupled, parametric oscillators are often studied in applied biology, physics, fluids, and many other disciplines. In this paper, we study a parametrically driven, coupled oscillator system where the individual oscillators are subjected to varying frequency and phase with a focus on the influence of the damping and coupling parameters away from parametric resonance frequencies. In particular, we study the long-term statistics of the oscillator system’s trajectories and stability. We present a novel, robust, and computationally efficient method, which has come to be known as an auxiliary function method for long-time averages, and we pair this method with classical, perturbative-asymptotic analysis to corroborate the results of this auxiliary function method. These paired methods are then used to compute the regions of stability for a coupled oscillator system. The objective is to explore the influence of higher order, coupling effects on the stability region across a broad range of modulation frequencies, including frequencies away from parametric resonances. We show that both simplified and more general asymptotic methods can be dangerously un-conservative in predicting the true regions of stability due to high order effects caused by coupling parameters. The differences between the true stability region and the approximate stability region can occur at physically relevant parameter values in regions away from parametric resonance. As an alternative to asymptotic methods, we show that the auxiliary function method for long-time averages is an efficient and robust means of computing true regions of stability across all possible initial conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call