Abstract

We consider an initial-boundary value problem for the one-dimensional nonstationary Schrodinger equation on the half-axis and study a two-level symmetric finite-difference scheme of Numerov type with higher approximation order. This scheme is constructed on a finite mesh, which is uniform with respect to space, with a nonlocal approximate transparent boundary condition of a general form (of Dirichlet-to-Neumann type). We obtain assertions about the stability of the finite-difference scheme in two norms with respect to the initial data and free terms in the equation and in the approximate transparent boundary condition under suitable conditions in the form of inequalities on the operator of approximate transparent boundary condition. Bibliography: 12 titles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.