Abstract

To overcome the shortcomings of gallic acid (GA) application, a novel glycosylated PPI delivery system was prepared for the first time in this study using the interaction between peanut protein isolate (PPI) and GA. The effects of glycosylation on the structural and functional properties of PPI and the functional properties of nanoparticles were investigated. The optimal nanoparticles were prepared at a mass ratio 1:3 of glycosylated PPI to GA with a particle size of 338.351 ± 18.823 nm and a PDI of 0.222 ± 0.039. Hydrophobic interactions were the main force maintaining the nanoparticle structure. The nanoparticles remained stable when exposed to different environmental factors. In addition, the DPPH and ABTS radical scavenging activities of nanoparticle-embedded GA were 35.94 ± 3.24 % and 62.59 ± 5.07 % after 108 h, which were significantly higher than those of the free GA group (P < 0.05). This study is important for developing GA and hydrophilic polyphenol delivery systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.