Abstract

The relativistic “no pair” model of quantum electrodynamics uses the Dirac operator, D(A) for the electron dynamics together with the usual self-energy of the quantized ultraviolet cutoff electromagnetic field A– in the Coulomb gauge. There are no positrons because the electron wave functions are constrained to lie in the positive spectral subspace of some Dirac operator, D, but the model is defined for any number, N, of electrons, and hence describes a true many-body system. In addition to the electrons there are a number, K, of fixed nuclei with charges ≤Z. If the fields are not quantized but are classical, it was shown earlier that such a model is always unstable (the ground state energy E=−∞) if one uses the customary D(0) to define the electron space, but is stable (E > − const.(N+K)) if one uses D(A) itself (provided the fine structure constant α and Z are not too large). This result is extended to quantized fields here, and stability is proved for α= 1/137 and Z≤ 42. This formulation of QED is somewhat unusual because it means that the electron Hilbert space is inextricably linked to the photon Fock space. But such a linkage appears to better describe the real world of photons and electrons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.