Abstract

Using recent experimental data on the time-averaged, spatially varying plasma properties within a Hall discharge plasma, we present in this article, a theoretical study of the response of this plasma to small (linear) perturbations in its properties. As a starting point for this analysis, we assume a two-dimensional fluid description that includes a simplified equation for the electron energy, and constrain the azimuthal wave vector such that we excite only the dominant (m=1) azimuthal modes. The growth rate and frequencies of predominantly axial and azimuthally propagating plasma disturbances are obtained by numerical solution of the resulting eigenvalue problem under a quasiuniform plasma condition, along the entire discharge channel. The results identify the persistence of a low frequency instability that is associated with the ionization process, concentrated largely in the vicinity of the exit plane, where the magnetic field is at its maximum value, consistent with experimental observations for the relatively low operating voltages (∼100 V) considered in this study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.