Abstract
We prove the stability of a Mach configuration, which occurs in shock reflection off an obstacle or shock interaction in compressible flow. The compressible flow is described by a full, steady Euler system of gas dynamics. The unperturbed Mach configuration is composed of three straight shock lines and a slip line carrying contact discontinuity. Among four regions divided by these four lines in the neighborhood of the intersection, two are supersonic regions, and other two are subsonic regions. We prove that if the constant states in the supersonic regions are slightly perturbed, then the structure of the whole configuration holds, while the other two shock fronts and the slip line, as well as the flow field in the subsonic regions, are also slightly perturbed. Such a conclusion asserts the existence and stability of the general Mach configuration in shock theory. In order to prove the result, we reduce the problem to a free boundary value problem, where two unknown shock fronts are free boundaries, while the slip line is transformed to a fixed line by a Lagrange transformation. In the region where the solution is to be determined, we have to deal with an elliptic-hyperbolic composed system. By decoupling this system and combining the technique for both hyperbolic equations and elliptic equations, we establish the required estimates, which are crucial in the proof of the existence of a solution to the free boundary value problem. © 2005 Wiley Periodicals, Inc.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.