Abstract
We study stability of underwater vehicle dynamics for a six-degree-of-freedom vehicle modeled as a neutrally buoyant, submerged rigid body in an ideal fluid. We consider the case in which the center of gravity and the center of buoyancy of the vehicle are noncoincident such that gravity introduces an orientation-dependent moment. Noting that Kirchhoff's equations of motion for a submerged rigid body are Hamiltonian with respect to a Lie-Poisson structure, we derive the Lie-Poisson structure for the underwater vehicle dynamics with noncoincident centers of gravity and buoyancy. Using the energy-Casimir method, we then derive conditions for Lyapunov stability of relative equilibria, i.e. stability of motions corresponding to constant translations and rotations. The conditions reveal for the vehicle stability problem the relevant design parameters, which in some cases can be interpreted as control parameters. Further, the formulation provides a setting for exploring the stabilizing and destabilizing effects of dissipation and externally applied control forces and torques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Automatica
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.