Abstract

Based on the Fornasini-Marchesini second local state-space (LSS) model, criteria that sufficiently guarantee the asymptotic stability of 2-D discrete systems are given. A sufficient condition for a 2-D nonlinear discrete system to be free of overflow oscillations is then shown in the case when a 2-D discrete system is employed by saturation arithmetic. Finally, an upper bound on parameter variations which guarantees the asymptotic stability of a perturbed 2-D discrete system is considered. It is shown that the upper bound stated in this paper is less conservative than the existing ones.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.