Abstract

In orthogonal turn-milling process, both of the workpiece and the cutter rotate at the same time, which causes cutting depth and cutting thickness to change instantaneously. In this paper, a new 2D stability model of orthogonal turn-milling is established, in which the effect of variable cutting depth and cutting thickness is considered. The stability lobe diagrams are obtained by using Full-discretization Method. By analyzing the stability of orthogonal turn-milling, it is found that it is better than that of ordinary milling in same machining conditions. It means that in orthogonal turn-milling process deep cutting depth can be chosen and high machining efficiency can be obtained compared to that in ordinary milling process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call