Abstract

To design a routing protocol for applications over low-power and lossy networks (LLNs), the IETF ROLL Working Group standardized the IPv6 Routing Protocol for LLNs (RPL), which organizes nodes in a LLN into a tree-like topology called Destination Oriented Directed Acyclic Graph (DODAG). RPL shows good scalability and fast network setup. However, it may suffer from severe unreliability due to the selection of suboptimal routes with low quality links. To optimize the reliability of RPL routes, this paper proposes a stability metric based routing protocol named sRPL for reliable routing and data collection in LLNs. We introduce a new routing metric for RPL called stability index (SI), which exploits stability characteristics of RPL nodes to select more stable routes. In addition, we present a passive and lightweight network layer technique to measure the bi-directional expected transmission count (ETX) for wireless links in LLNs. As a use case of SI, we combine SI metric with ETX metric to make routing decisions. Simulation results show that sRPL can improve packet delivery rate of RPL routing protocol by 20%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call