Abstract

We consider families of systems of two-dimensional ordinary differential equations with the origin 0 as a non-hyperbolic equilibrium. For any number , we show that it is possible to choose a parameter in these equations such that the stability index is precisely . In contrast to that, for a hyperbolic equilibrium x it is known that either or . Furthermore, we discuss a system with an equilibrium that is locally unstable but globally attracting, highlighting some subtle differences between the local and non-local stability indices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.