Abstract
This paper presents a novel potentiometric approach for the determination of palonosetron HCl using two sensors; ionophore-free and ionophore-doped ones. The two sensors successfully determined the cited drug in the range of 1 × 10–5–1 × 10–2 M with respective Nernstian slopes of 54.9 ± 0.25 and 59.3 ± 0.16 mV/decade. Incorporating calix[8]arene as an ionophore resulted in a lower detection limit (LOD = 3.1 × 10–6 M) and enhanced selectivity when compared to the ionophore-free sensor (LOD = 7.9 × 10–6 M). This modification was also associated with faster response for the ionophore-doped sensor (response time = 20 s) compared to the ionophore-free one (response time = 30 s). The two sensors showed a stable response over a pH range of 3.0–8.0. They successfully determined palonosetron HCl in presence of its oxidative degradation products. They were also used for direct determination of the drug in commercially available parenteral solution without any interference from other dosage forms’ additives.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.