Abstract

We present a comparison of measured and calculated state densities which suggest (1) that transition-metal glasses possess a short-range coordination similar to that of fcc crystals, (2) that the relative stability of different short-range atomic arrangements varies inversely with the state density at the Fermi level, (3) that transition-metal glasses tend to have large Fermi-level state densities, and therefore (4) that transition-metal glasses are characterized by the relative instability of their short-range atomic arrangements. We also argue that stoichiometry fluctuations are more effective in stabilizing the glass if the valence difference between the constituents is large. This effect is manifest in a correlation between the valence difference of the glass constituents and the width of the concentration range in which glasses form and the relative quenching rates required to form the glasses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.