Abstract

In this paper, we present a quantitative micromagnetic modeling analysis of head stability in in-stack biased current perpendicular to plane (CPP) spin valve (SV) heads at deep submicron track widths. It is found that sufficient pinning on the in-stack bias layer is the key for stability. The narrower track-width heads have better stability. For in-stack biased bottom SV heads, the conventional structure has serious stability problem due to weakened or reversed bias field at free layer track edge. Controlling CPP edge profile is crucial for stability. We also studied the effect of current field on head performance. Depending on the current direction, current field can either induce instability or assist head stability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call