Abstract
BackgroundPhenotypic evolution is mainly explained by selection for phenotypic variation arising from factors including mutation and environmental noise. Recent theoretical and experimental studies have suggested that phenotypes with greater developmental stability tend to have a constant phenotype and gene expression level within a particular genetic and environmental condition, and this positively correlates with stronger evolutionary conservation, even after the accumulation of genetic changes. This could reflect a novel mechanism that contributes to evolutionary conservation; however, it remains unclear whether developmental stability is the cause, or whether at least it contributes to their evolutionary conservation. Here, using Japanese medaka lines, we tested experimentally whether developmental stages and gene expression levels with greater stability led to their evolutionary conservation.ResultsWe first measured the stability of each gene expression level and developmental stage (defined here as the whole embryonic transcriptome) in the inbred F0 medaka population. We then measured their evolutionary conservation in the F3 generation by crossing the F0 line with the distantly related Japanese medaka line (Teradomori), followed by two rounds of intra-generational crossings. The results indicated that the genes and developmental stages that had smaller variations in the F0 generation showed lower diversity in the hybrid F3 generation, which implies a causal relationship between stability and evolutionary conservation.ConclusionsThese findings suggest that the stability in phenotypes, including the developmental stages and gene expression levels, leads to their evolutionary conservation; this most likely occurs due to their low potential to generate phenotypic variation. In addition, since the highly stable developmental stages match with the body-plan-establishment stage, it also implies that the developmental stability potentially contributed to the strict conservation of animal body plan.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.