Abstract

<abstract><p>Stability properties of discrete time waveform relaxation (DWR) methods based on Euler schemes are analyzed by applying them to two dissipative systems. Some sufficient conditions for stability of the considered methods are obtained; at the same time two examples of instability are given. To investigate the influence of the splitting functions and underlying numerical methods on stability of DWR methods, DWR methods based on different splittings and different numerical schemes are considered. The obtained results show that the stabilities of waveform relaxation methods based on an implicit Euler scheme are better than those based on explicit Euler scheme, and that the stabilities of waveform relaxation methods based on the classical splittings such as Gauss-Jacobi and Gauss-Seidel splittings are worse than those based on the eigenvalue splitting presented in this paper. Finally, numerical examples that confirm the theoretical results are presented.</p></abstract>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call