Abstract

This paper focuses on the 2D incompressible anisotropic magneto-micropolar fluid equations with vertical dissipation, horizontal magnetic diffusion, and horizontal vortex viscosity. The goal is to investigate the stability of perturbations near a background magnetic field in the 2D magneto-micropolar fluid equations. Two main results are obtained. The first result is based on the linear system. Global existence for any large initial data and asymptotic linear stability are established. The second result explores stability for the nonlinear system. It is proven that if the initial data are sufficiently small, then the solution for some perturbations near a background magnetic field remains small. Additionally, the long-time behaviour of the solution is presented. The most challenging terms in the proof are the linear terms in the velocity equation and the micro-rotation equation that will grow with respect to time t. We are able to find some background fields to control the growth of the linear terms. Our results reveal that some background fields can stabilise electrically conducting fluids.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.