Abstract

This paper presents the stability-evaluation outcomes of a multimachine power system (MMPS) connected with a large-scale hybrid wind farm (WF) and photovoltaic (PV) farm or hybrid wind/PV farm (HWPF) and a hybrid energy-storage system (HESS) consisting of a vanadium redox flow battery (VRFB) and a supercapacitor (SC). A probability scheme is used to determine the rated power of the proposed HESS, where the capacities of the VRFB-ESS and the SC-ESS are designed to effectively utilize their operating features. The control strategy of the HESS is proposed to reduce the pressure of the VRFB-ESS and smooth the output power fluctuations of the HWPF. The steady-state stability, small-signal stability, dynamic performances, and transient simulations of the studied grid-tied HWPF fed to the MMPS with and without the HESS are achieved. The simulation outcomes show that the proposed HESS can enhance the stability and power-smoothing performance of the HWPF fed to the MMPS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.