Abstract
The success of learning techniques in solving a variety of hard AI problems promotes the flourish of recognition-based applications. Many state-of-the-art text localization systems, which can detect and report the positions of text segments in an image, are mainly implemented with learning-based techniques. Data-driven learning raises a series of questions on how to verify, validate and evaluate such learning-based systems. In this paper, we propose a methodology to automatically evaluate the stability of text localization systems via metamorphic relations, where a stable system should output consistent results for similar inputs with the same text segments. We introduce six metamorphic relations that should be preserved in a stable text localization system and define the corresponding metrics for stability evaluation. With the defined metamorphic relations, we apply metamorphic testing techniques to compare the inputs and outputs to evaluate system stability, and further diagnose the causes of inconsistency. The extensive experimentation on both academic and commercial text localization systems demonstrates the effectiveness of our method on stability evaluation for such systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.