Abstract
We study the boundary rigidity problem for domains in Rn: Is a Riemannian metric uniquely determined, up to an action of diffeomorphism fixing the boundary, by the distance function ρg(x,y) known for all boundary points x and y? It was conjectured by Michel [M] that this was true for simple metrics. In this paper, we first study the linearized problem that consists of determining a symmetric 2-tensor, up to a potential term, from its geodesic X-ray integral transform Ig. We prove that the normal operator Ng=I*gIg is a pseudodifferential operator (ΨDO) provided that g is simple, find its principal symbol, identify its kernel, and construct a microlocal parametrix. We prove a hypoelliptic type of stability estimate related to the linear problem. Next, we apply this estimate to show that unique solvability of the linear problem for a given simple metric g, up to potential terms, implies local uniqueness for the nonlinear boundary rigidity problem near that g.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.