Abstract
Phase retrieval refers to the problem of recovering some signal (which is often modelled as an element of a Hilbert space) from phaseless measurements. It has been shown that in the deterministic setting phase retrieval from frame coefficients is always unstable in infinite-dimensional Hilbert spaces (Cahill et al. in Trans Am Math Soc Ser B 3(3):63–76, 2016) and possibly severely ill-conditioned in finite-dimensional Hilbert spaces (Cahill et al. in Trans Am Math Soc Ser B 3(3):63–76, 2016). Recently, it has also been shown that phase retrieval from measurements induced by the Gabor transform with Gaussian window function is stable under a more relaxed semi-global phase recovery regime based on atoll functions (Alaifari in Found Comput Math 19(4):869–900, 2019). In finite dimensions, we present first evidence that this semi-global reconstruction regime allows one to do phase retrieval from measurements of bandlimited signals induced by the discrete Gabor transform in such a way that the corresponding stability constant only scales like a low order polynomial in the space dimension. To this end, we utilise reconstruction formulae which have become common tools in recent years (Bojarovska and Flinth in J Fourier Anal Appl 22(3):542–567, 2016; Eldar et al. in IEEE Signal Process Lett 22(5):638–642, 2014; Li et al. in IEEE Signal Process Lett 24(4):372–376, 2017; Nawab et al. in IEEE Trans Acoust Speech Signal Process 31(4):986–998, 1983).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.