Abstract
ABSTRACT Breakwater's vulnerability to extreme events such as storms is a reality. To avert the failure of the breakwater, one of the things engineers can do is to design a seaward reef which breaks steep waves and attenuates them. The stability of such a reef, a conventional rubble mound breakwater and a breakwater protected by a seaward submerged reef is investigated through physical model study using regular waves. Tests are carried out for different relative spacings between two rubble mound structures (X/d = 2.5 to 13.33) and for different relative heights (h/d = 0.625 to 0.833) while keeping reef crest width B constant at 0.1m (i.e. the relative crest width B/d = 0.25 to 0.33). The submerged reef of crest width 0.1m located at a seaward distance X of 1 m, 2.5 m and 4.0 m reduces the breakwater damages by a range of 4 to 41 %, 40 to 66% and 63 to 80% respectively. The stability equations for reef and defenced breakwater are derived from curve fitting through the experimental data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.