Abstract
Perovskite materials are reported to be effective in peroxymonosulfate (PMS) based Fenton-like reactions, the leaching rates of chalcogenide materials in perovskite materials are however serious, thus leading to bad performance in long-term stability. In this study, an O-doped MoS2 is synthesized to composite with LaCoO3, and the high catalytic activity of LaCoO3 is well preserved with greatly decreased Co leaching. During the BPA degradation with PMS as oxidant, ∼100% degradation can be achieved in 20 min and this degradation efficiency can be maintained for ∼45 h in a simulated fixed bed reactor, which is almost 3 times longer than the pure LaCoO3. With the compositing of O-doped MoS2, the leached Co was greatly decreased and the dominated reactive oxidation species (ROS) transformed from SO4•– into O2•– with longer lifespan, thus resulting in the better stability. This study could promote the application of perovskite materials in the real industrial wastewater treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.