Abstract

The structure and properties of two-dimensional phosphoborane sheets were computationally investigated using Density Functional Theory calculations. The calculated phonon spectrum and band structure point to dynamic stability and allowed characterization of the predicted two-dimensional material as a direct-gap semiconductor with a band gap of ~1.5 eV. The calculation of the optical properties showed that the two-dimensional material has a relatively small absorptivity coefficient. The parameters of the mechanical properties characterize the two-dimensional phosphoborane as a relatively soft material, similar to the monolayer of MoS2 . Assessment of thermal stability by the method of molecular dynamics indicates sufficient stability of the predicted material, which makes it possible to observe it experimentally.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call