Abstract
We consider the following Lotka-Volterra predator-prey system with two delays: x '( t ) = x ( t ) [ r(1) - ax ( t - tau(1) ) - by( t ) ] y '( t ) = y ( t ) [ - r(1) + cx ( t ) - dy( t - tau(2) ) ] ( E ) We show that a positive equilibrium of system ( E ) is globally asymptotically stable for small delays. Critical values of time delay through which system ( E ) undergoes a Hopf bifurcation are analytically determined. Some numerical simulations suggest an existence of subcritical Hopf bifurcation near the critical values of time delay. Further system (E) exhibits some chaotic behavior when tau(2) becomes large.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.