Abstract
This article is concerned with the asymptotic stability analysis of Takagi–Sugeno stochastic fuzzy Cohen–Grossberg neural networks with discrete and distributed time‐varying delays. Based on the Lyapunov functional and linear matrix inequality (LMI) technique, sufficient conditions are derived to ensure the global convergence of the equilibrium point. The proposed conditions can be checked easily by LMI Control Toolbox in Matlab. It has been shown that the results are less restrictive than previously known criteria. They are obtained under mild conditions, assuming neither differentiability nor strict monotonicity for activation function. Numerical examples are given to demonstrate the effectiveness of our results. © 2014 Wiley Periodicals, Inc. Complexity 21: 143–154, 2016
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.