Abstract
This study proposes a new control that stabilizes a three-dimensional (3D) passive walker without torque input at knees and ankles joints by using entrainment and a mechanical oscillator. It is difficult to stabilize a 3D biped passive walker in different environments because the range of initial conditions for stable walking is limited, so we designed a 3D biped passive walker as a passive walking platform by considering the results of human gait analysis to make the success of passive walking high. The stability of this platform was analytically determined by analyzing the frontal movement limit cycle. In the new control, the frontalmovement period is synchronized with the swing-leg period by a mechanical oscillator on the top of the walker. The mechanical oscillator controller generates a target path to synchronize oscillatormovement with swing-leg movement using frequency entrainment. The walker is stabilized when the frontal movement period was synchronized with the swing-leg period by periodic input generated by the mechanical oscillator. It was experimentally found consequently that the walker was stabilized on different slopes and flat floors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.