Abstract

SUMMARYRecently, it has been enlightened the interest of a class of switching rules with good properties, which are called eventually periodic: more precisely, it has been proven that a finite family of linear vector fields of can be stabilized by means of eventually periodic switching rules provided that it is asymptotically controllable and satisfies an additional finite time controllability condition. Unfortunately, simple examples point out that in general, eventually periodic switching rules are not robust with respect to state measurement errors.In this paper, we introduce a new type of switching rules with improved robustness properties, which are called recurrent switching rules. They are subject to the construction of a finite sequence of complete cones Γ1, … ,ΓH of . We shown that, if a stabilizing eventually periodic switching rule for is known, then Γ1, … ,ΓH can be constructed in such a way that is stabilized by any recurrent switching rule subject to Γ1, … ,ΓH. Copyright © 2012 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.