Abstract

The geometry of rotary aircraft engine components is usually defined by thin mechanical elements and complex surfaces that are only achievable by 5-axis machining due to either limited access or the design itself. Such thin-walled characteristics make these components susceptible to vibrations while machining and usually require careful manipulation of the toolpath parameters to minimize cutting forces and vibration. Moreover, the tool suppliers’ approach leans towards the feature-build design of cutter geometry to increase the productivity and quality of a machined surface. Some examples of those recent improvements for rotary aircraft engine components are barrel-shaped tools that attempt to increase the contact radius on the tool-part interface to minimize step-over while conserving the scallop height to meet roughness tolerances. This research aims to fill a gap in the current literature by proposing a stability model for barrel-shaped tools. Stability contour maps make use of a mechanistic dynamic force model for barrel-shaped tools. The force model is also capable of including tool runout and orientation angles, tilt and lead, as named in most CAM software. By simulating dynamic forces on the time domain, a contour map is presented to address unstable vibrations. Since forced vibrations and surface location error (SLE) may also appear when milling aircraft parts, SLE and surface roughness are also determined. Finally, given the complexity and number of parameters, validation of the stability maps is performed through experimental chatter tests using a thin wall component.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.