Abstract

We study stability conditions on the Calabi–Yau-[Formula: see text] categories associated to an affine type [Formula: see text] quiver which can be constructed from certain meromorphic quadratic differentials with zeroes of order [Formula: see text]. We follow Ikeda’s work to show that this moduli space of quadratic differentials is isomorphic to the space of stability conditions quotient by the spherical subgroup of the autoequivalence group. We show that the spherical subgroup is isomorphic to the braid group of affine type [Formula: see text] based on the Khovanov–Seidel–Thomas method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.