Abstract

We consider the thermodynamical equilibrium state flow of an inviscid non-heat-conducting gas flowing around a plane infinite wedge, and study the stationary solution to this problem–the so-called strong shock wave; the flow behind the shock front is subsonic. We find the solution to the linear analog of the original mixed problem, prove that the solution trace on the shock wave is the superposition of the direct and reflected waves, and (the main point) justify the Lyapunov asymptotical stability of the strong shock wave provided that the uniform Lopatinsky condition is fulfilled. The initial data have a compact support, and the solvability conditions occur.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.