Abstract

In this paper, we study the homogenization of the system of partial differential equations describing the quasistatic shearing of heterogeneous thermoviscoplastic materials. We first present the existence and uniqueness of the solution of the above system. We then define "stable by homogenization" models as the models where the equations in both the heterogeneous problems and the homogenized one are of the same form. Finally we show that the model with non-oscillating strain-rate sensitivity which is submitted to steady boundary shearing and body force, is stable by homogenization. In this model, the homogenized (effective) coefficients depend on the initial conditions and on the boundary shearing and body force. Those theoretical results are illustrated by one numerical example.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.