Abstract

For steady-state turbulent flows with unique mean properties, we determine a sense in which the mean velocity is linearly supercritical. The shear-turbulence literature on this point is ambiguous. As an example, we reassess the stability of mean profiles in turbulent Poiseuille flow. The Reynolds & Tiederman (1967) numerical study is used as a starting point. They had constructed a class of one-dimensional flows which included, within experimental error, the observed profile. Their numerical solutions of the resulting Orr-Sommerfeld problems led them to conclude that the Reynolds number for neutral infinitesimal disturbances was twenty-five times the Reynolds number characterizing the observed mean flow. They found also that the first nonlinear corrections were stabilizing. In the realized flow, this latter conclusion appears incompatible with the former. Hence, we have sought a more complete set of velocity profiles which could exhibit linear instability, retaining the requirement that the observed velocity profile is included in the set. We have added two dynamically generated modifications of the mean. The first addition is a fluctuation in the curvature of the mean flow generated by a Reynolds stress whose form is determined by the neutrally stable Orr-Sommerfeld solution. We find that this can reduce the stability of the observed flow by as much as a factor of two. The second addition is the zero-average downstream wave associated with the above Reynolds stress. The three-dimensional linear instability of this modification can even render the observed flow unstable. Those wave amplitudes that just barely will ensure instability of the observed flow are determined. The relation of these particular amplitudes to the limiting conditions admitted by an absolute stability criterion for disturbances on the mean flow is found. These quantitative results from stability theory lie in the observationally determined Reynolds-Tiederman similarity scheme, and hence are insensitive to changes in Reynolds number.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call