Abstract

We study the equilibrium homogeneous deformations of a homogeneous parallelepiped made of an arbitrary incompressible, isotropic elastic material and subject to a distribution of dead-load surface tractions corresponding to an equibiaxial tensile stress state accompanied by an orthogonal uniaxial compression of the same amount. We show that only two classes of homogeneous equilibrium solutions are possible, namely symmetric deformations, characterized by two equal principal stretches, and asymmetric deformations, with all different principal stretches. Following the classical energy-stability criterion, we then find necessary and sufficient conditions for both symmetric and asymmetric equilibrium deformations to be weak relative minimizers of the total potential energy. Finally, we analyze the mechanical response of a parallelepiped made of an incompressible Mooney–Rivlin material in a monotonic dead loading process starting from the unloaded state. As a major result, we model the actual occurrence of a bifurcation from a primary branch of locally stable symmetric deformations to a secondary, post-critical branch of locally stable asymmetric solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.