Abstract

Abstract By means of systematic simulations, we study the motion of discrete solitons in weakly dissipative Toda lattices (TLs) with periodic boundary conditions, resonantly driven by a spatially staggered time-periodic (ac) force. A complex set of alternating stability bands and instability gaps, including scattered isolated stability points, is revealed in the parametric plane of the soliton’s velocity and forcing amplitude for a given size of the circular lattice. The analysis is also reported for the circular TL including a single light- or heavymass defect. The stability chart as a whole shrinks and eventually disappears with the increase of the lattice’s size and strength of the mass defect. Qualitative explanations to these findings are proposed. We also report the dependence of the stability area on the initial position of the soliton, finding that the area is largest for some intersite position. For a pair of solitons traveling in opposite directions, there exist regimes where both solitons survive periodic collisions in small-size lattices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.