Abstract

Good quality meshes are extensively used for finding approximate solutions for partial differential equations for fluid flow in two dimensional surfaces. We present an overview of existing algorithms for refinement and generation of triangular meshes. We introduce the concept of node stability in the refinement of Delaunay triangulation. We present an algorithm based on the location of center of gravity of two dimensional shapes to place a candidate refinement node so that the newly placed node has increased stability. The algorithm runs in O(n2) time, where n is the number of nodes in the mesh.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.