Abstract

Under consideration are the multicriteria integer linear programming problems with finitely many feasible solutions. The problem itself consists in finding a set of extremal solutions. We derive some lower and upper bounds for the T1-stability radius under assumption that arbitrary Holder norms are given in the solution and criteria spaces. A class of the problems with an infinitely large stability radius is specified. We also consider the case of the multicriteria linear Boolean problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.