Abstract

In the present study, the dynamic stability of simply supported, circular cylindrical shells subjected to dynamic axial loads is analysed. Geometric nonlinearities due to finite-amplitude shell motion are considered by using the Donnell’s nonlinear shallow-shell theory. The effect of structural damping is taken into account. A discretization method based on a series expansion involving a relatively large number of linear modes, including axisymmetric and asymmetric modes, and on the Galerkin procedure is developed. Axisymmetric modes are included; indeed, they are essential in simulating the inward deflection of the mean oscillation with respect to the equilibrium position and in describing the axisymmetric deflection due to axial loads. A finite length, simply supported shell is considered; the boundary conditions are satisfied, including the contribution of external axial loads acting at the shell edges. The effect of a contained liquid is investigated. The linear dynamic stability and nonlinear response are analysed by using continuation techniques and direct simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.