Abstract

Self-excited oscillations have been discovered experimentally in a supersonic laminar boundary layer along a flat plate. By the use of appropriate measuring techniques, the damping and amplification of the oscillations are studied and the stability limits determined at free-stream Mach numbers 1·6 and 2·2. The wave-like nature of the oscillations is demonstrated and their wave velocities are measured using a specially designed ‘disturbance generator’. It is shown empirically that the stability limits expressed in terms of the boundary-layer-thickness Reynolds number are independent of the Mach number and dependent only on the oscillation frequency. The main effect of compressibility is an increase in wave velocity with Mach number. This has the consequence that the disturbances, although possessing the same dimensionless amplification coefficient as in the incompressible case, have less time (per unit distance) to grow in amplitude. Thus, the adiabatic compressible boundary layer is shown to be more stable than the incompressible one. In general, the experiments confirm the basic assumptions and predictions of the existing stability theory and also suggest the desirability of improvement in the theory in certain phases of the problem. Finally, on the basis of these results a rough estimate of the transition Reynolds number is made in the compressible flow range.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.