Abstract

AbstractThis article addresses the issue of enhancing mobility of actively actuated vehicles by the use of optimal force distribution, and by actively controlling the location of the center of mass of the vehicle body. Force distribution in actively actuated vehicles is an underspecified problem, and optimal force distribution leads to improved contact conditions. Actively actuated vehicles also possess the ability to vary their configuration. This capability can be used to locate the center of mass of the system to further enhance mobility by providing sufficient traction, and ensuring vehicle stability, during difficult vehicle maneuvers. In this work, the general idea of control of the location of the center of mass, followed by optimal force distribution, is addressed first. This is followed by an application of these ideas to Gofor, a simple actively actuated wheeled micro‐rover system, that has been designed and fabricated at the Jet Propulsion Laboratory. An algorithm to achieve desired traction and stability has been developed. Simulation studies were performed to investigate negotiation of a vertical surface. It was found that one set of wheels readily climbed the vertical surface with the use of active mass and force distribution. This is a significant improvement over traditional wheeled vehicle systems. © 1994 John Wiley & Sons, Inc.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.