Abstract
Abstract The main objective was to evaluate the stability and toxicity of a Solution Enhanced Dispersion by Supercritical Fluids (SEDS) formulated A. paniculata extract that was intended for food applications. The best formulated SEDS A. paniculata extract with improved dissolution of andrographolide (data not shown) was obtained using 25 mg/mL A. paniculata extract (maceration in acetone) and 6 mg/mL Eudragit L100-55 with acetone as feed solvent at the following SEDS co-precipitation conditions: 150 bar, 40 C, 15 L/min CO2 flow rate (1 bar, 25 C), 0.5 mL/min liquid feed flow. Sticky A. paniculata extract with 16% w/w andrographolide was transformed into SEDS co-precipitates concentrated with 20.4% w/w andrographolide. Only 20-30% of andrographolide was degraded after two-month storage under 5, 30, 45 C at 75% relative humidity (RH). About 30-60% of andrographolide was degraded after addition into drinking water, orange drink, soybean milk for a day. This would imply its unstable nature after being dispersed and wetted in liquid food. SEDS co-precipitate was found to be practically acetone-free (< 0.1 ppm) by Headspace Gas Chromatography-Mass Spectrometry (GC-MS). This showed the capability of the SEDS process in stripping off acetone. Higher cytotoxic potential of SEDS co-precipitates (LC50 = 46.46 µg/mL) than extract (LC50 = 150.45 µg/mL) was observed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.