Abstract
This study is centered around the dynamic behaviors observed in a class of fractional-order generalized reaction–diffusion inertial neural networks (FGRDINNs) with time delays. These networks are characterized by differential equations involving two distinct fractional derivatives of the state. The global uniform stability of FGRDINNs with time delays is explored utilizing Lyapunov comparison principles. Furthermore, global synchronization conditions for FGRDINNs with time delays are derived through the Lyapunov direct method, with consideration given to various feedback control strategies and parameter perturbations. The effectiveness of the theoretical findings is demonstrated through three numerical examples, and the impact of controller parameters on the error system is further investigated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.