Abstract

ABSTRACTThe synthesis of aluminum oxide grafted on silica gel surface was carried out by the reaction of a suitable aluminum precursor with the surface hydrolysis of the oxide support. The chemical and physical properties of the attached oxide, SiO2/ Al2O3, can be quite different than those found for bulk Al2O3. The advantage of this preparation method, compared to the conventional ones (impregnation, precipitation and calcination), is that the oxide is highly dispersed on the surface (monolayer or submonolayer). We characterized the surface oxides treated at the temperature range of 423 to 1573 K employing X-ray photoelectron spectroscopy (XPS), solid state nuclear magnetic resonance spectroscopy (NMR), and diffuse reflectance spectroscopy (DRS). XPS was used to identify the oxidation states and atomic ratios. Al27 NMR detected two species for samples heated up to 1023 K, and another one above this temperature. DRS, using pyridine as a molecular probe, showed that both Lewis and Brönsted acid sites are stable up to 1023 K. We concluded that the aluminum oxide is highly dispersed on the silica gel surface and it remains stable up to 1023 K.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.