Abstract

In this paper, the two MAC schemes are introduced and analyzed to solve the time fractional Stokes equation on non-uniform grids. One is the standard MAC scheme and another is the efficient MAC scheme, where the fast evaluation of the Caputo fractional derivative is used. The stability results are derived. We obtain the second order superconvergence in discrete L2 norm for both velocity and pressure. We also obtain the second order superconvergence for some terms of the H1 norm of the velocity on non-uniform grids. Besides, the efficient algorithm for the evaluation of the Caputo fractional derivative is used to save the storage and computation cost greatly. Finally, some numerical experiments are presented to show the efficiency and accuracy of MAC schemes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.