Abstract
This paper is concerned with the stability and stabilization problems of T-S fuzzy systems with time-varying delays. The purpose is to develop a new state-feedback controller design method with less conservatism. First, a novel Lyapunov-Krasovskii functional is constructed by combining delay-product-type functional method together with the state vector augmentation. By utilizing Wirtinger-based integral inequality and an extended reciprocally convex matrix inequality, a less conservative delay-dependent stability condition is developed. Then, the corresponding controller design method for the closed-loop delayed fuzzy system is derived based on parallel distributed compensation scheme. Finally, two classic numerical examples are given to show the effectiveness and merits of the proposed approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.