Abstract
In this paper, new conditions of stability and stabilization are proposed for periodic piecewise linear systems. A continuous Lyapunov function is constructed with a time-dependent homogeneous Lyapunov matrix polynomial. The exponential stability problem is studied first using square matricial representation and sum of squares form of homogeneous matrix polynomial. Constraints on the exponential order of each subsystem used in previous work are relaxed. State-feedback controllers with time-varying polynomial controller gain are designed to stabilize an unstable periodic piecewise system. The proposed stabilizing controller can be solved directly and effectively, which is applicable to more general situations than those previously covered. Numerical examples are given to illustrate the effectiveness of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.